Высоковольтный источник напряжения для коптильни


Высоковольтный источник напряжения для коптильни

Приветствую, радиолюбители-самоделкины, а также все любители домашних копчёных продуктов!

Очень часто при сборке самодельных коптильных установок люди задаются вопросом, где взять источник высокого напряжения, который необходим для создания статического поля в коптильне? Покупать готовые высоковольтные генераторы — выходит неоправданно дорого, тем более, что это довольно специфичный товар и продаётся далеко не на каждом углу. Многие также считают, что такой высоковольтный источник неразрывно связан с большим риском, ведь если 220В из розетки опасны для жизни, то что уж говорить про десятки киловольт, необходимых для хорошего копчения. На самом деле, говоря о безопасности, стоит упомянуть, что опасен для жизни именно ток, проходящий через человека, а не напряжение, то есть можно хоть руками ловить электрические разряды и даже не чувствовать их — но только в том случае, если высоковольтный источник не обладает большой мощностью и, соответственно, не может выдать большой ток, критичный для здоровья. Для копчения главное — создания статического поля, высоковольтный источник будет, по сути, работать в холостую, без нагрузки, а значит, от него не требуется большой мощности, которая могла бы привести к травмам при сборке или использовании устройства. Также есть заблуждение, что собрать подобное устройство своими руками весьма затруднительно, так как нужно обязательно уметь читать электрические принципиальные схемы и обладать хорошими навыками пайки, чтобы изготовить плату и суметь собрать на ней электронную схему. На самом деле, высоковольтный блок на 10-20кВ можно собрать и вовсе не собирая схемы самому, а использовать лишь несколько готовых модулей. В качестве высоковольтного трансформатора, детали, которая непосредственно будет генерировать высокое напряжение, можно использовать катушку зажигания автомобиля. Рассмотрим в этой статье более подробно, как собрать своими руками высоковольтный блок, который может использоваться не только для коптильни, но и для различных высоковольтных экспериментов, например, для получения интересного эффекта — лестницы Иакова.

Первым делом вкратце рассмотрим общую структурную схему устройства, из каких оно будет состоять блоков и какой блок какую роль выполянет.


Питаться устройство будет от розетки — сети 220В, контакты для подключения к 220В показаны в самой левой части схемы. Далее следует блок питания, который создаёт нужное напряжения для питания устройства — да, это выглядит несколько нелогичным, что сетевое напряжения сперва понижается на целый порядок, чтобы затем была возможность уже из него получить нужные 10-20кВ, но именно таков принцип работы устройства. После блока питания следует амперметр-вольтметр, который будет показывать напряжение и ток, потребляемый устройством. Контролируя ток, можно будет управлять мощностью коптильни. После амперметра-вольтметра питающее напряжение поступает на ШИМ-регулятор, задачей которого является создание импульсов прямоугольной формы, от которых будет питаться катушка зажигания, а также регулировка мощности. Сигнал с ШИМ-регулятора поступает уже непосредственно на первичную обмотку катушки зажигания — а высокое напряжение снимается с её вторичной обмотки. При этом нужно помнить, что статическое поле, необходимое для копчения, создаётся только постоянным напряжением, а с выхода катушки снимается переменное, поэтому к выходу катушки подключается умножитель. Он не только выпрямляет переменное напряжение, но и увеличивает его амплитуду, то есть напряжение, в несколько раз, что позволяет достичь нужных 10-20кВ, либо даже 30, в зависимости от применённой катушки и напряжения блока питания. Для построения умножителя потребуется всего 3 высоковольтных диода и три конденсатора — эти детали не дефицитны, кроме того, для их соединения даже не потребует печатная плата, вся сборка будет происходить навесным монтажом. Рассмотрим ниже подробнее каждый отдельный блок представленной выше схемы. В качестве блока питания можно применить любой источник питания с выходным напряжением 12-16В, при этом чем больше будет напряжения, тем большее напряжение можно будет снимать с выхода катушки. Идеально в качестве блока питания подойдут, например, компьютерный блок питания, либо блок питания ноутбука. Также нужно обратить внимание на мощность — она не должна быть слишком маленькой, ведь схема будет потребляет ток около 2-3А при максимуме мощности, соответственно, блок питания должен иметь запас по току. Либо можно использовать мощный трансформатор со вторичной обмоткой на 12-14В, поставив после него диодный мост и конденсатор для сглаживания.


После блока питания на схеме присутствует амперметр, совмещённый с вольтметром — данная деталь не является обязательной, схема будет работать и без него, но видеть напряжения питания и протекающий в данный момент ток не будет лишним. Кроме того, схема предусматривает регулировку мощности, а мощность можно будет отслеживать как раз по показаниям амперметра, чем больше ток — тем больше мощность, соответственно, напряжение на выходе высоковольтного блока. Здесь можно применить, например, стрелочные головки, они обеспечат наилучшую наглядность показаний, либо встраиваемые приборы, как на картинке ниже, они не займут много места в корпусе будущего устройства.


После того, как протекающий ток измерен амперметр, а напряжение — вольтметром, питающее напряжение поступает на ШИМ-регулятор, пожалуй, самую важную часть схемы. Собрать схему ШИМ-регулятора можно самому, используя популярную микросхему таймер NE555, либо используя готовый модуль, как на картинке ниже — автор выбрал второй вариант. ШИМ-регулятор имеет потенциометр, служащий для регулировки мощности, при сборке устройства его ручку нужно будет вывести наружу корпуса, закрепив вместе с платой, либо отпаяв потенциометр и подсоединив его вновь уже на проводах.


Найти такие модули без труда можно на Али — там они стоят совсем немного, либо в магазинах радиодеталей. Обратите внимание, что ШИМ-регулятор должен создавать импульсы частотой не более 1,5 кГц для правильной работы катушки зажигания. Если вы собираете ШИМ-регулятор самостоятельно, то нужно изначально рассчитывать его на данную частоту, а если используется готовый модуль, то в нём нужно изменить конденсатор, помеченный стрелочной на номинал 10 нФ, его кодовая маркировка 103. Изначально большинство ШИМ-регуляторов работают на более высоких диапазонах, чтобы частота на попадала в слышимый диапазон, а здесь же наоборот требуется её уменьшить, это может привести к тому, что схема или катушка будет слегка пищать — но данная переделка необходима для правильной работы катушки зажигания. Рассмотрим чуть подробнее, что такое ШИМ и каким образом происходит регулировка мощности. На вход модуля подаётся постоянное напряжение, а с выхода снимаются прямоугольные импульсы, их вид может быть таким, как на картинке ниже.

А может быть вот таким, как здесь.

Меняется (в зависимости от поворота потенциометра) скважность импульсов, она же длительность, она же ширина импульсов, она же коэффициент заполнения. На первой картинке длительность импульсов короткая, следовательно, мощность, подаваемая на катушку, будет небольшой, а на второй же картинке длительность гораздо больше и соответствует коэффициенту заполнения 50% — при этом достигается максимум напряжения на выходе катушки. Если ещё дальше увеличивать коэффициент заполнения, мощность будет наоборот снижаться, а катушка может начать нагреваться, поэтому для возбуждения катушек зажигания нужно использовать скважность от 0 до 50%. ШИМ-регуляторы нашли большое применение за счёт своей высокой эффективности, ведь в процессе работы они почти не нагреваются.

Катушку зажигания можно использовать практически любую — их легко купить, например, на авторазборках. Единственный критерий выбора — чтобы катушка была исправной и к ней легко можно было подключить провода. Толстый красный провод, идущий от катушки — это её высоковольтный выход, с него снимается напряжение.

Далее несколько слов об умножителе. Для его постройки нужно использовать высоковольтные диоды, рассчитанные как минимум 15 000В — найти такие диоды можно в микроволновой печи, а купить в сервисе по ремонту бытовой техники, там их с удовольствием продадут. Конденсаторы также должны быть рассчитаны на напряжение не меньше 15 000В, их ёмкость должна быть равна примерно 470 пФ, разброс ёмкость может быть большим без потери работоспособности умножителя. Наглядную схему соединения диодов и конденсаторов можно увидеть на картинке ниже.

После сборки выводы диодов и конденсаторов нужно тщательно залить термоклеем либо эпоксидной смолой, чтобы не возникло пробоев между ними.

Общий вид конструкции в сборе. Перед установкой в корпус её можно включить и протестировать — если всё собрано верно, сразу же после включения будет слышен характерный «шорох», создаваемый высоким напряжением — это значит, катушка и умножитель работают. Можно поднести друг к другу высоковольтные выводы и увидеть небольшие дуги, но не стоит закорачивать высоковольтный выход.

После этого конструкция собирается в просторном пластиковом корпусе, все соединения пропаиваются для большей надёжности и защиты от замыканий. На передней панели корпуса можно расположить амперметр-вольтметр, регулятор мощности и выключатель. Сбоку или сзади корпуса выводится высоковольтный выход, а также в корпус заводится напряжение питания. Несмотря на то, что мощности катушки зажигания недостаточно, чтобы убить, не стоит прикасаться к её выводам либо выводам умножителя — будет очень больно. Удачной сборки!


Источник (Source)

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

Высоковольтные генераторы напряжения с емкостными накопителями энергии

Генераторы высокого напряжения малой мощности широко используют в дефектоскопии, для питания портативных ускорителей заряженных частиц, рентгеновских и электронно-лучевых трубок, фотоэлектронных умножителей, детекторов ионизирующих излучений. Кроме этого, их также применяют для электроимпульсного разрушения твердых тел, получения ультрадисперсных порошков, синтеза новых материалов, в качестве искровых те-чеискателей, для запуска газоразрядных источников света, при электроразрядной диагностике материалов и изделий, получении газоразрядных фотографий по методу С. Д. Кирлиан, тестировании качества высоковольтной изоляции. В быту подобные устройства находят применение в качестве источников питания для электронных уловителей ультрадисперсной и радиоактивной пыли, систем электронного зажигания, для электроэффлювиаль-ных люстр (люстр А. Л. Чижевского), аэроионизаторов, устройств медицинского назначения (аппараты Д’Арсонваля, франклизации, ультратонотерапии), газовых зажигалок, электроизгородей, элек-трошокеров и т.д.

Условно к генераторам высокого напряжения нами отнесены устройства, вырабатывающие напряжение выше 1 кВ.

Генератор высоковольтных импульсов с использованием резонансного трансформатора (рис. 11.1) выполнен по классической схеме на газовом разряднике РБ-3.

Конденсатор С2 заряжается пульсирующим напряжением через диод VD1 и резистор R1 до напряжения пробоя газового разрядника. В результате пробоя газового промежутка разрядника конденсатор разряжается на первичную обмотку трансформатора, после чего процесс повторяется. В итоге на выходе трансформатора Т1 формируются затухающие высоковольтные импульсы амплитудой до 3…20 кВ.

Для защиты выходной обмотки трансформатора от перенапряжения параллельно ей подключен разрядник, выполненный в виде электродов с регулируемым воздушным зазором.

Рис. 11.1. Схема генератора высоковольтных импульсов с использованием газового разрядника.

Рис. 11.2. Схема генератора высоковольтных импульсов с удвоением напряжения.

Трансформатор Т1 генератора импульсов (рис. 11.1) выполнен на незамкнутом ферритовом сердечнике М400НН-3 диаметром 8 и длиной 100 мм. Первичная (низковольтная) обмотка трансформатора содержит 20 витков провода МГШВ 0,75 мм с шагом намотки 5…6 мм. Вторичная обмотка содержит 2400 витков рядовой намотки провода ПЭВ-2 0,04 мм. Первичная обмотка намотана поверх вторичной через политетрафторэти-леновую (фторопластовую) прокладку 2×0,05 мм. Вторичная обмотка трансформатора должна быть надежно изолирована от первичной.

Вариант выполнения генератора высоковольтных импульсов с использованием резонансного трансформатора показан на рис. 11.2. В этой схеме генератора имеется гальваническая развязка от питающей сети. Сетевое напряжение поступает на промежуточный (повышающий) трансформатор Т1. Снимаемое со вторичной обмотки сетевого трансформатора напряжение поступает на выпрямитель, работающий по схеме удвоения напряжения.

В результате работы такого выпрямителя на верхней по схеме обкладке конденсатора С2 относительно нулевого провода появляется положительное напряжение, равное квадратный корень из 2Uii, где Uii — напряжение на вторичной обмотке силового трансформатора.

На конденсаторе С1 формируется соответствующее напряжение противоположного знака. В результате напряжение на обкладках конденсатора C3 будет равно 2 квадратных кореня из 2Uii.

Скорость заряда конденсаторов С1 и С2 (С1=С2) определяется величиной сопротивления R1.

Когда напряжение на обкладках конденсатора C3 сравняется с напряжением пробоя газового разрядника FV1, произойдет пробой его газового промежутка, конденсатор C3 и, соответственно, конденсаторы С1 и С2 разрядятся, во вторичной обмотке трансформатора Т2 возникнут периодические затухающие колебания. После разряда конденсаторов и отключения разрядника процесс заряда и последующего разряда конденсаторов на первичную обмотку трансформатора 12 повторится снова.

Высоковольтный генератор, используемый для получения фотографий в газовом разряде, а также для сбора ультрадис-персной и радиоактивной пыли (рис. 11.3) состоит из удвоителя напряжения, релаксационного генератора импульсов и повышающего резонансного трансформатора.

Удвоитель напряжения выполнен на диодах VD1, VD2 и конденсаторах С1, С2. Зарядную цепочку образуют конденсаторы С1 — C3 и резистор R1. Параллельно конденсаторам С1 — C3 включен газовый разрядник на 350 В с последовательно соединенной первичной обмоткой повышающего трансформатора Т1.

Как только уровень постоянного напряжения на конденсаторах С1 — C3 превысит напряжение пробоя разрядника, конденсаторы разрядятся через обмотку повышающего трансформатора и в результате образуется высоковольтный импульс. Элементы схемы подобраны так, что частота формирования импульсов около 1 Гц. Конденсатор С4 предназначен для защиты выходного зажима прибора от попадания сетевого напряжения.

Рис. 11.3. Схема генератора импульсов высокого напряжения с использованием газового разрядника или динисторов.

Выходное напряжение устройства целиком определяется свойствами используемого трансформатора и может достигать 15 кВ. Высоковольтный трансформатор на выходное напряжение порядка 10 кВ выполнен на диэлектрической трубке с внешним диаметром 8 и длиной 150 мм, внутри расположен медный электрод диаметром 1,5 мм. Вторичная обмотка содержит 3…4 тысячи витков провода ПЭЛШО 0,12, намотанных виток к витку в 10… 13 слоев (ширина намотки 70 мм) и пропитанных клеем БФ-2 с межслойной изоляцией из политетрафторэтилена. Первичная обмотка содержит 20 витков провода ПЭВ 0,75, пропущенного через кембрик из поливинилхлорида.,

В качестве такого трансформатора можно также применить модифицированный выходной трансформатор строчной развертки телевизора; трансформаторы электронных зажигалок, ламп-вспышек, катушек зажигания и др.

Газовый разрядник Р-350 может быть заменен переключаемой цепочкой динисторов типа КН102 (рис. 11.3, справа), что позволит ступенчато изменять выходное напряжение. Для равномерного распределения напряжения на динисторах параллельно к каждому из них подключены резисторы одинакового номинала сопротивлением 300…510 кОм.

Вариант схемы высоковольтного генератора с использованием в качестве порогово-коммутирующего элемента газонаполненного прибора — тиратрона показан на рис. 11.4.

Рис. 11.4. Схема генератора импульсов высокого напряжения с использованием тиратрона.

Сетевое напряжение выпрямляется диодом VD1. Выпрямленное напряжение сглаживается конденсатором С1 и подается на зарядную цепочку R1, С2. Как только напряжение на конденсаторе С2 достигнет напряжения зажигания тиратрона VL1, он вспыхивает. Конденсатор С2 разряжается через первичную обмотку трансформатора Т1, тиратрон гаснет, конденсатор вновь начинает заряжаться и т.д.

В качестве трансформатора Т1 использована автомобильная катушка зажигания.

Вместо тиратрона VL1 МТХ-90 можно включить один или несколько динисторов типа КН102. Амплитуду высокого напряжения можно регулировать количеством включенных динисторов.

Конструкция высоковольтного преобразователя с использованием тиратронного коммутатора описана в работе. Отметим, что для разряда конденсатора могут быть использованы и другие виды газонаполненных приборов.

Более перспективно применение в современных генераторах высокого напряжения полупроводниковых переключающих приборов. Их достоинства отчетливо выражены: это высокая повторяемость параметров, меньшая стоимость и габариты, высокая надежность.

Ниже будут рассмотрены генераторы высоковольтных импульсов с использованием полупроводниковых коммутирующих приборов (динисторов, тиристоров, биполярных и полевых транзисторов).

Вполне равноценным, но слаботочным аналогом газовых разрядников являются динисторы.

На рис. 11.5 показана электрическая схема генератора, выполненного на динисторах. По своей структуре генератор полностью подобен описанным ранее (рис. 11.1, 11.4). Основное отличие заключается в замене газового разрядника цепочкой последовательно включенных динисторов.

Рис. 11.5. Схема генератора высоковольтных импульсов на динисторах.

Рис. 11.6. Схема генератора высоковольтных импульсов с мостовым выпрямителем.

Следует отметить, что КПД такого аналога и коммутируемые токи заметно ниже, чем у прототипа, однако динисторы более доступны и более долговечны.

Несколько усложненный вариант генератора высоковольтных импульсов представлен на рис. 11.6. Сетевое напряжение подается на мостовой выпрямитель на диодах VD1 — VD4. Выпрямленное напряжение сглаживается конденсатором С1. На этом конденсаторе образуется постоянное напряжение около 300 В, которое используется для питания релаксационного генератора, составленного из элементов R3, С2, VD5 и VD6. Его нагрузкой является первичная обмотка трансформатора Т1. Со вторичной обмотки снимаются импульсы амплитудой примерно 5 кВ и частотой следования до 800 Гц.

Цепочка динисторов должна быть рассчитана на напряжение включения около 200 В. Здесь можно использовать динисторы типа КН102 либо Д228. При этом следует учитывать, что напряжение включения динисторов типа КН102А, Д228А составляет 20 В; КН102Б, Д228Б — 28 В; КН102В, Д228В — 40 В; КН102Г, Д228Г — 56 В; КН102Д, Д228Д — 80 В; КН102Е — 75 В; КН102Ж, Д228Ж — 120 В; КН102И, Д228И — 150 В.

В качестве трансформатора Т1 в приведенных выше устройствах может быть использован доработанный строчный трансформатор от черно-белого телевизора. Его высоковольтную обмотку оставляют, остальные удаляют и вместо них наматывают низковольтную (первичную) обмотку — 15…30 витков провода ПЭВ диаметром 0,5…0,8 мм.

При выборе числа витков первичной обмотки следует учитывать количество витков вторичной обмотки. Необходимо также иметь в виду, что величина выходного напряжения генератора высоковольтных импульсов в большей степени зависит от настройки контуров трансформатора в резонанс, нежели от соотношения числа витков обмоток.

Характеристики некоторых видов телевизионных трансформаторов строчной развертки приведены в таблице 11.1.

Таблица 11.1. Параметры высоковольтных обмоток унифицированных телевизионных трансформаторов строчной развертки.

Тип трансформатора Число витков Провод R обмотки, Ом
ТВС-А, ТВС-Б 720 ПЭЛШО 0,1 152
ТВС-70П1 2700 ПЭВ-2 0,05 1400
ТВС-70П2 1800 ПЭВ-2 0,05 800
ТВС-70П2 536 ПЭВ-2 0,12 170
ТВС-70АМ 720 ПЭЛШО 0,1 250
ТВС-90П4 1900 ПЭВШО 0,08 600
ТВС-110, ТВС-110М 940 ПЭЛШО 0,1 240
. ТВС-110А 1000 ПЭВ-2 0,1 250
ТВС-110Л1 1300 ПЭМ-2 0,09 430
ТВС-110Л2 900 ПЭВ-2 0,08 310
ТВС-110ЛЗ 940 ПЭЛШО 0,1 240
Тип трансформатора Число витков Провод R обмотки, Ом
ТВС-110ЛА 1200 ПЭВ-2 0,1 380
ТВС-110АМ 900 ПЭВ-2 0,08 280
ТВС-110Л4 1290 ПЭМ-2 0,1 410
ТВС-110Л5 365 ПЭМ-2 0,35 6
ТВС-110П2 1650 ПЭМ-2 0,12 500
ТВС-90ЛЦ2, ТВС-90ЛЦ2-1 1900 ПЭВ-2 0,08 800
ТВС-90ЛЦ4 1904 ПЭМ-2 0,08 800
ТВС-90ЛЦ5 370 ПЭВ-2 0,35 13
ТВС-90ПЦ4 730 ПЭМ-2 0,15 28
ТВС-90ПЦ11 900 ПЭВ-2 0,14 —
ТВС-90ПЦ12 715 ПЭМ-2 0,5 27
ТВС-110ПЦ15 1080 ПЭВ-2 0,14 112
ТВС-110ПЦ16, ТВС-110ПЦ18 1050 ПЭВ-2 0,14 102

Рис. 11.7. Электрическая схема генератора высоковольтных импульсов.

На рис. 11.7 представлена опубликованная на одном из сайтов схема двухступенчатого генератора высоковольтных импульсов, в котором в качестве элемента коммутации использован тиристор. В свою очередь, в качестве порогового элемента, определяющего частоту следования высоковольтных импульсов и запускающего тиристор, выбран газоразрядный прибор — неоновая лампа (цепочка HL1, HL2).

При подаче напряжения питания генератор импульсов, выполненный на основе транзистора VT1 (2N2219A — КТ630Г), вырабатывает напряжение порядка 150 В. Это напряжение выпрямляется диодом VD1 и заряжает конденсатор С2.

После того как напряжение на конденсаторе С2 превысит напряжение зажигания неоновых ламп HL1, HL2, через токоограничивающий резистор R2 произойдет разряд конденсатора на управляющий электрод тиристора VS1, тиристор отопрется. Разрядный ток конденсатора С2 создаст электрические колебания в первичной обмотке трансформатора Т2.

Напряжение включения тиристора можно регулировать, подбирая неоновые лампы с разным напряжением зажигания. Ступенчато изменять величину напряжения включения тиристора можно переключением числа последовательно включенных неоновых ламп (или заменяющих их динисторов).

Рис. 11.8. Диаграмма электрических процессов на электродах полупроводниковых приборов (к рис. 11.7).

Диаграмма напряжений на базе транзистора VT1 и на аноде тиристора показана на рис. 11.8. Как следует из представленных диаграмм, импульсы блокинг-генератора имеют длительность примерно 8 мс. Заряд конденсатора С2 происходит ступенчато-экспоненциально в соответствии с действием импульсов, снимаемых со вторичной обмотки трансформатора Т1.

На выходе генератора формируются импульсы напряжением примерно 4,5 кВ. В качестве трансформатора Т1 использован выходной трансформатор для усилителей низкой частоты. В качестве

высоковольтного трансформатора Т2 использован трансформатор от фотовспышки или переработанный (см. выше) телевизионный трансформатор строчной развертки.

Схема еще одного варианта генератора с использованием неоновой лампы в качестве порогового элемента приведена на рис. 11.9.

Рис. 11.9. Электрическая схема генератора с пороговым элементом на неоновой лампе.

Релаксационный генератор в нем выполнен на элементах R1, VD1, С1, HL1, VS1. Он работает при положительных лолупе-риодах сетевого напряжения, когда конденсатор С1 заряжается до напряжения включения порогового элемента на неоновой лампе HL1 и тиристоре VS1. Диод VD2 демпфирует импульсы самоиндукции первичной обмотки повышающего трансформатора Т1 и позволяет повысить выходное напряжение генератора. Выходное напряжение достигает 9 кВ. Неоновая лампа одновременно является сигнализатором включения устройства в сеть.

Высоковольтный трансформатор намотан на отрезке стержня диаметром 8 и длиной 60 мм из феррита М400НН. Вначале размещают первичную обмотку — 30 витков провода ПЭЛШО 0,38, а затем вторичную — 5500 витков ПЭЛШО 0,05 или большего диаметра. Между обмотками и через каждые 800… 1000 витков вторичной обмотки прокладывают слой изоляции из поливинилхлоридной изоляционной ленты.

В генераторе возможно введение дискретной многоступенчатой регулировки выходного напряжения переключением в последовательной цепи неоновых ламп либо динисторов (рис. 11.10). В первом варианте обеспечиваются две ступени регулирования, во втором — до десяти и более (при использовании динисторов КН102А с напряжением включения 20 В).

Рис. 11.10. Электрическая схема порогового элемента.

Рис. 11.11. Электрическая схема генератора высокого напряжения с пороговым элементом на диоде.

Простой генератор высокого напряжения (рис. 11.11) позволяет получить на выходе импульсы амплитудой до 10 кВ.

Переключение управляющего элемента устройства происходит с частотой 50 Гц (на одной полуволне сетевого напряжения). В качестве порогового элемента использован диод VD1 Д219А (Д220, Д223), работающий при обратном смещении в режиме лавинного пробоя.

При превышении на полупроводниковом переходе диода напряжения лавинного пробоя происходит переход диода в проводящее состояние. Напряжение с заряженного конденсатора С2 подается на управляющий электрод тиристора VS1. После включения тиристора конденсатор С2 разряжается на обмотку трансформатора Т1.

Трансформатор Т1 не имеет сердечника. Он выполнен на катушке диаметром 8 мм из полиметилметакрилата или политет-рахлорэтилена и содержит три разнесенных секции шириной по

9 мм. Повышающая обмотка содержит 3×1000 витков, намотанных проводом ПЭТФ, ПЭВ-2 0,12 мм. После намотки обмотка должна быть пропитана парафином. Поверх парафина накладывается 2 — 3 слоя изоляции, после чего наматывают первичную обмотку — 3×10 витков провода ПЭВ-2 0,45 мм.

Тиристор VS1 можно заменить другим на напряжение выше 150 В. Лавинный диод можно заменить цепочкой динисторов (рис. 11.10, 11.11 внизу).

Схема маломощного переносного источника импульсов высокого напряжения с автономным питанием от одного гальванического элемента (рис. 11.12) состоит из двух генераторов. Первый построен на двух маломощных транзисторах, второй — на тиристоре и динисторе.

Рис. 11.12. Схема генератора напряжения с низковольтным питанием и тиристорно-динисторным ключевым элементом.

Каскад на транзисторах разной проводимости преобразует низковольтное постоянное напряжение в высоковольтное импульсное. Времязадающей цепочкой в этом генераторе служат элементы С1 и R1. При включении питания открывается транзистор ѴТ1, и перепад напряжения на его коллекторе открывает транзистор ѴТ2. Конденсатор С1, заряжаясь через резистор R1, уменьшает базовый ток транзистора ѴТ2 настолько, что транзистор ѴТ1 выходит из насыщения, а это приводит к закрыванию и ѴТ2. Транзисторы будут закрыты до тех пор, пока конденсатор С1 не разрядится через первичную обмотку трансформатора Т1.

Повышенное импульсное напряжение, снимаемое со вторичной обмотки трансформатора Т1, выпрямляется диодом VD1 и поступает на конденсатор С2 второго генератора с тиристором VS1 и динистором VD2. В каждый положительный полупериод

накопительный конденсатор С2 заряжается до амплитудного значения напряжения, равного напряжению переключения динистора VD2, т.е. до 56 В (номинальное импульсное отпирающее напряжение для динистора типа КН102Г).

Переход динистора в открытое состояние воздействует на цепь управления тиристора VS1, который в свою очередь тоже открывается. Конденсатор С2 разряжается через тиристор и первичную обмотку трансформатора Т2, после чего динистор и тиристор вновь закрываются и начинается очередной заряд конденсатора — цикл переключений повторяется.

Со вторичной обмотки трансформатора Т2 снимаются импульсы с амплитудой в несколько киловольт. Частота искровых разрядов равна примерно 20 Гц, но она намного меньше частоты импульсов, снимаемых со вторичной обмотки трансформатора Т1. Происходит это потому, что конденсатор С2 заряжается до напряжения переключения динистора не за один, а за несколько положительных полупериодов. Величина емкости этого конденсатора определяет мощность и длительность выходных разрядных импульсов. Безопасное для динистора и управляющего электрода тринистора среднее значение разрядного тока выбрано из расчета емкости этого конденсатора и величины импульсного напряжения, питающего каскад. Для этого емкость конденсатора С2 должна быть примерно 1 мкФ.

Трансформатор Т1 выполнен на кольцевом ферритовом магнитопроводе типа К10x6x5. Он имеет 540 витков провода ПЭВ-2 0,1 с заземленным отводом после 20-го витка. Начало его намотки присоединяется к транзистору VT2, конец — к диоду VD1. Трансформатор Т2 намотан на катушке с ферритовым или пермаллоевым сердечником диаметром 10 мм, длиной 30 мм. Катушку с внешним диаметром 30 мм и шириной 10 мм наматывают проводом ПЭВ-2 0,1 мм до полного заполнения каркаса. Перед окончанием намотки делается заземленный отвод, и последний ряд провода из 30…40 витков наматывается виток к витку поверх изолирующего слоя лакоткани.

Трансформатор Т2 по ходу намотки необходимо пропитывать изолирующим лаком или клеем БФ-2, затем тщательно просушить.

Вместо VT1 и VT2 можно применить любые маломощные транзисторы, способные работать в импульсном режиме. Тиристор КУ101Е можно заменить на КУ101Г. Источник питания — гальванические элементы с напряжением не более 1,5 В, например, 312, 314, 316, 326, 336, 343, 373, или дисковые никель-кад-миевые аккумуляторы типа Д-0,26Д, Д-0,55С и т.п.

Тиристорный генератор высоковольтных импульсов с сетевым питанием показан на рис. 11.13.

Рис. 11.13. Электрическая схема генератора высоковольтных импульсов с емкостным накопителем энергии и коммутатором на тиристоре.

Во время положительного полупериода сетевого напряжения конденсатор С1 заряжается через резистор R1, диод VD1 и первичную обмотку трансформатора Т1. Тиристор VS1 при этом закрыт, поскольку отсутствует ток через его управляющий электрод (падение напряжения на диоде VD2 в прямом направлении мало по сравнению с напряжением, необходимым для открывания тиристора).

При отрицательном полупериоде диоды VD1 и VD2 закрываются. На катоде тиристора образуется падение напряжения относительно управляющего электрода (минус — на катоде, плюс — на управляющем электроде), в цепи управляющего электрода появляется ток, и тиристор открывается. В этот момент конденсатор С1 разряжается через первичную обмотку трансформатора. Во вторичной обмотке появляется импульс высокого напряжения. И так — каждый период сетевого напряжения.

На выходе устройства формируются двухполярные импульсы высокого напряжения (поскольку при разряде конденсатора в цепи первичной обмотки возникают затухающие колебания).

Резистор R1 может быть составлен из трех параллельно соединенных резисторов МЛТ-2 сопротивлением по 3 кОм.

Диоды VD1 и VD2 должны быть рассчитаны на ток не менее 300 мА и обратное напряжение не ниже 400 В (VD1) и 100 Б (VD2). Конденсатор С1 типа МБМ на напряжение не ниже 400 В. Его емкость — доли-единицы мкФ — подбирают экспериментально. Тиристор VS1 типа КУ201К, КУ201Л, КУ202К — КУ202Н. Трансформатори — катушка зажигания Б2Б (на 6 В) от мотоцикла или автомобиля.

В устройстве может быть использован телевизионный трансформатор строчной развертки ТВС-110Л6, ТВС-1 ЮЛА, ТВС-110АМ.

Достаточно типичная схема генератора высоковольтных импульсов с емкостным накопителем энергии показана на рис. 11.14.

Рис. 11.14. Схема тиристорного генератора высоковольтных импульсов с емкостным накопителем энергии.

Генератор содержит гасящий конденсатор С1, диодный выпрямительный мост VD1 — VD4, тиристорный ключ VS1 и схему управления. При включении устройства заряжаются конденсаторы С2 и C3, тиристор VS1 пока закрыт и ток не проводит. Предельное напряжение на конденсаторе С2 ограничено стабилитроном VD5 величиной 9В. В процессе зарядки конденсатора С2 через резистор R2 напряжение на потенциометре R3 и, соответственно, на управляющем переходе тиристора VS1 возрастает до определенного значения, после чего тиристор переключается в проводящее состояние, а конденсатор C3 через тиристор VS1 разряжается через первичную (низковольтную) обмотку трансформатора Т1, генерируя высоковольтный импульс. После этого тиристор закрывается и процесс начинается заново. Потенциометр R3 устанавливает порог срабатывания тиристора VS1.

Частота повторения импульсов составляет 100 Гц. В качестве высоковольтного трансформатора может быть использована автомобильная катушка зажигания. В этом случае выходное напряжение устройства достигнет 30…35 кВ. Тиристорный генератор высоковольтных импульсов (рис. 11.15) управляется импульсами напряжения, снимаемого с релаксационного генератора, выполненного на динисторе VD1. Рабочая частота генератора управляющих импульсов (15…25 Гц) определяется величиной сопротивления R2 и емкостью конденсатора С1.

Рис. 11.15. Электрическая схема тиристорного генератора высоковольтных импульсов с импульсным управлением.

Релаксационный генератор связан с тиристорным ключом через импульсный трансформатор Т1 типа МИТ-4. В качестве выходного трансформатора Т2 используется высокочастотный трансформатор от аппарата для дарсонвализации «Искра-2». Напряжение на выходе устройства может доходить до 20…25 кВ.

На рис. 11.16 показан вариант подачи импульсов управления на тиристор VS1.

Преобразователь напряжения (рис. 11.17), разработанный в Болгарии, содержит два каскада. В первом из них нагрузкой ключевого элемента, выполненного на транзисторе ѴТ1, является обмотка трансформатора Т1. Управляющие импульсы прямоугольной формы периодически включают/выключают ключ на транзисторе ѴТ1, подключая/отключая тем самым первичную обмотку трансформатора.

Рис. 11.16. Вариант управления тиристорным коммутатором.

Рис. 11.17. Электрическая схема двухступенчатого генератора высоковольтных импульсов.

Во вторичной обмотке наводится повышенное напряжение, пропорциональное коэффициенту трансформации. Это напряжение выпрямляется диодом VD1 и заряжает конденсатор С2, который подключен к первичной (низковольтной) обмотке высоковольтного трансформатора Т2 и тиристору VS1. Управление работой тиристора осуществляется импульсами напряжения, снимаемыми с дополнительной обмотки трансформатора Т1 через цепочку элементов, корректирующих форму импульса.

В результате тиристор периодически включается/отключается. Конденсатор С2 разряжается на первичную обмотку высоковольтного трансформатора.

Генератор высоковольтных импульсов, рис. 11.18, содержит в качестве управляющего элемента генератор на основе однопереходного транзистора.

Рис. 11.18. Схема генератора высоковольтных импульсов с управляющим элементом на однопереходном транзисторе.

Сетевое напряжение выпрямляется диодным мостом VD1 — VD4. Пульсации выпрямленного напряжения сглаживает конденсатор С1, ток заряда конденсатора в момент включения устройства в сеть ограничивает резистор R1. Через резистор R4 заряжается конденсатор C3. Одновременно вступает в действие генератор импульсов на однопереходном транзисторе ѴТ1. Его «спусковой» конденсатор С2 заряжается через резисторы R3 и R6 от параметрического стабилизатора (балластный резистор R2 и стабилитроны VD5, VD6). Как только напряжение на конденсаторе С2 достигает определенного значения, транзистор ѴТ1 переключается, и на управляющий переход тиристора VS1 поступает открывающий импульс.

Конденсатор C3 разряжается через тиристор VS1 на первичную обмотку трансформатора Т1. На его вторичной обмотке формируется импульс высокого напряжения. Частота следования этих импульсов определяется частотой генератора, которая, в свою очередь, зависит от параметров цепочки R3, R6 и С2. Под-строечным резистором R6 можно изменять выходное напряжение генератора примерно в 1,5 раза. При этом частота импульсов регулируется в пределах 250… 1000 Гц. Кроме того, выходное напряжение изменяется при подборе резистора R4 (в пределах от 5 до 30 кОм).

Конденсаторы желательно применять бумажные (С1 и C3 — на номинальное напряжение не менее 400 В); на такое же напряжение должен быть рассчитан диодный мост. Вместо указанного на схеме можно использовать тиристор Т10-50 или в крайнем случае КУ202Н. Стабилитроны VD5, VD6 должны обеспечить суммарное напряжение стабилизации около 18 В.

Трансформатор изготовлен на основе ТВС-110П2 от чер-но-белых телевизоров. Все первичные обмотки удаляют и наматывают на освободившееся место 70 витков провода ПЭЛ или ПЭВ диаметром 0,5…0,8 мм.

Электрическая схема генератора импульсов высокого напряжения, рис. 11.19, состоит из диодно-конденсаторного умножителя напряжения (диоды VD1, VD2, конденсаторы С1 — С4). На его выходе получается постоянное напряжение примерно 600 В.

Рис. 11.19. Схема генератора высоковольтных импульсов с удвоителем напряжения сети и генератором запускающих импульсов на однопереходном транзисторе.

В качестве порогового элемента устройства использован однопереходный транзистор VT1 типа КТ117А. Напряжение на одной из его баз стабилизировано параметрическим стабилизатором на стабилитроне VD3 типа КС515А (напряжение стабилизации 15 Б). Через резистор R4 осуществляется заряд конденсатора С5, и когда напряжение на управляющем электроде транзистора VT1 превысит напряжение на его базе, произойдет переключение VT1 в проводящее состояние, а конденсатор С5 разрядится на управляющий электрод тиристора VS1.

При включении тиристора цепочка конденсаторов С1 — С4, заряженных до напряжения около 600…620 В, разряжается на низковольтную обмотку повышающего трансформатора Т1. После этого тиристор отключается, зарядно-разрядные процессы повторяются с частотой, определяемой постоянной R4C5. Резистор R2 ограничивает ток короткого замыкания при включении тиристора и одновременно является элементом зарядной цепи конденсаторов С1 — С4.

Схема преобразователя (рис. 11.20) и его упрощенного варианта (рис. 11.21) подразделяется на следующие узлы: сетевой заградительный фильтр (фильтр помех); электронный регулятор; высоковольтный трансформатор.

Рис. 11.20. Электрическая схема генератора высокого напряжения с сетевым фильтром.

Рис. 11.21. Электрическая схема генератора высокого напряжения с сетевым фильтром.

Схема на рис. 11.20 работает следующим образом. Конденсатор C3 заряжается через диодный выпрямитель VD1 и резистор R2 до амплитудного значения напряжения сети (310 В). Это напряжение попадает через первичную обмотку трансформатора Т1 на анод тиристора VS1. По другой ветви (R1, VD2 и С2) медленно заряжается конденсатор С2. Когда в процессе его заряда достигается пробивное напряжение динистора VD4 (в пределах 25…35 В), конденсатор С2 разряжается через управляющий электрод тиристора VS1 и открывает его.

Конденсатор C3 практически мгновенно разряжается через открытый тиристор VS1 и первичную обмотку трансформатора Т1. Импульсный изменяющийся ток индуцирует во вторичной обмотке Т1 высокое напряжение, величина которого может превысить 10 кВ. После разряда конденсатора C3 тиристор VS1 закрывается, и процесс повторяется.

В качестве высоковольтного трансформатора используют телевизионный трансформатор, у которого удаляют первичную обмотку. Для новой первичной обмотки используется обмоточный провод диаметром 0,8 мм. Количество витков — 25.

Для изготовления катушек индуктивности заградительного фильтра L1, L2 лучше всего подходят высокочастотные феррито-вые сердечники, например, 600НН диаметром 8 мм и длиной 20 мм, имеющие примерно по 20 витков обмоточного провода диаметром 0,6…0,8 мм.

Рис. 11.22. Электрическая схема двухступенчатого генератора высокого напряжения с управляющим элементом на полевом транзисторе.

Двухступенчатый генератор высокого напряжения (автор — Andres Estaban de la Plaza) содержит трансформаторный генератор импульсов, выпрямитель, времязадающую RC-цепоч-ку, ключевой элемент на тиристоре (симисторе), высоковольтный резонансный трансформатор и схему управления работой тиристора (рис. 11.22).

Аналог транзистора TIP41 — КТ819А.

Низковольтный трансформаторный преобразователь напряжения с перекрестными обратными связями, собранный на транзисторах VT1 и VT2, вырабатывает импульсы с частотой повторения 850 Гц. Транзисторы VT1 и VT2 для облегчения работы при протекании больших токов установлены на радиаторах, выполненных из меди или алюминия.

Выходное напряжение, снимаемое со вторичной обмотки трансформатора Т1 низковольтного преобразователя, выпрямляется диодным мостом VD1 — VD4 и через резистор R5 заряжает конденсаторы C3 и С4.

Управление порогом включения тиристора производится регулятором напряжения, в состав которого входит полевой транзистор ѴТЗ.

Далее работа преобразователя существенно не отличается от описанных ранее процессов: происходит периодический заряд/разряд конденсаторов на низковольтную обмотку трансформатора, генерируются затухающие электрические колебания. Выходное напряжение преобразователя при использовании на выходе в качестве повышающего трансформатора катушки зажигания от автомобиля, достигает 40…60 кВ при резонансной частоте примерно 5 кГц.

Трансформатор Т1 (выходной трансформатор строчной развертки), содержит 2×50 витков провода диаметром 1,0 мм, намотанных бифилярно. Вторичная обмотка содержит 1000 витков диаметром 0,20…0,32 мм.

Отметим, что в качестве управляемых ключевых элементов могут быть использованы современные биполярные и полевые транзисторы.

Источник: Шустов М. А. Практическая схемотехника. Преобразователи напряжения.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]