Лабораторные блоки питания — какие они бывают (подборка-путеводитель)


Устройство

В простейшем классическом варианте блок питания — это трансформатор, понижающий или повышающий переменное напряжение за счет электромагнитной индукции. Если требуется преобразование формы напряжения из переменного (AC) в постоянное (DC) — блок питания AC-DC, то используется выпрямитель напряжения. Также, в классическом блоке питания AC-DC присутствует фильтр пульсаций, создаваемых выпрямителем.

Классический вариант во многом оправдан благодаря своей простоте, надежности, доступности компонентов и отсутствию создаваемых радиопомех. Но из-за большого веса и габаритов, увеличивающихся пропорционально мощности, металлоемкости, а также низкого КПД при стабильном выходном напряжении, классические трансформаторные блоки питания уходят в прошлое. На смену им приходят импульсные блоки питания, о которых подробно и пойдет речь.

Импульсные блоки питания представляют собой инверторную систему, в которой входящее электричество сначала выпрямляется, после преобразуется в ток высокой частоты и определенной скважности с амплитудой прямоугольных импульсов, а потом происходит преобразование трансформатором и пропускание через фильтр низкой частоты. За счет повышения эффективности работы трансформатора с ростом частоты, снижаются требования к габаритам и металлоемкости по сравнению с классическими блоками питания.

Импульсные блоки питания получили широкое распространение благодаря ряду достоинств: значительно меньшие габариты и вес при сравнимой мощности; намного более высокий КПД (до 98%), благодаря устойчивости состояния ключевых элементов — потери возникают только при включении или выключении; меньшая стоимость — это стало возможным из-за повсеместного выпуска необходимых конструктивных элементов и разработке транзисторов повышенной мощности; сравнительная надежность; больший диапазон входных частот и напряжений — импульсный блок питания одинаково стабильно работает в диапазоне от 110 до 250 вольт и при частоте 50-60 Гц, что делает возможным использование техники с импульсными блоками питания повсеместно; безопасность при коротком замыкании.

Справедливости ради стоит сказать, что импульсные блоки питания не лишены минусов — сложность или невозможность ремонта, наличие высокочастотных радиопомех. Благодаря современным технологиям, эти минусы преодолимы, о чем свидетельствует широкое распространение, популярность и востребованность таких блоков на рынке.

Но, благодаря широкому распространению и большому разнообразию импульсных блоков питания в продаже, отличающихся функционально и характеристиками, иногда очень сложно подобрать необходимый. Попробуем разобраться в основных отличиях импульсных блоков, в их характеристиках и особенностях, а также ответим на вопрос: на что нужно обратить внимание, если вы хотите купить блок питания.

Особенности характеристик импульсных блоков питания

В первую очередь, блоки питания делятся по функциональности преобразования. Одни блоки питания преобразуют электроэнергию таким образом, что на выходе получается стабилизированное напряжение при необходимой мощности — это AC-DC блоки питания. Другие преобразуют электроэнергию так, что на выходе получается стабилизированный ток постоянного значения в заданных диапазонах напряжения — это, так называемые, драйверы.


Импульсных блоков питания

И те и другие блоки питания имеют определенную максимальную выходную мощность. Но, если в первом случае постоянным остается напряжение при возрастании тока в зависимости от мощности потребителей электроэнергии, то во втором случае постоянной остается сила тока, а в зависимости от мощности потребителей меняется напряжение на выходе. Диапазон изменения в драйверах ограничен, поэтому они распространены менее широко. Используются, в основном, в светотехнике, где заранее известны необходимые параметры тока.

Проще говоря, если вам нужен блок питания с необходимым током, например 700мА, при определенной мощности, то вам нужно выбирать драйвер. Если же вам нужен источник питания заданного напряжения и мощности, то нужен AC-DC блок питания.

При подборе блока питания важно учитывать его основные характеристики. С драйверами проще: все, что нужно о них знать, как правило, известно в рамках спецификации потребителя энергии. Встречаются драйверы в основном в составе готовых электротехнических изделий.

Чуть сложнее с AC-DC блоками питания. Современные блоки питания могут иметь различные характеристики выходного напряжения. Как правило, это: 5 вольт, 12 вольт, 24 вольта. Встречаются блоки питания и с другими выходными характеристиками: 3,3 вольта, 18 вольт, 32 вольта и прочие, но они менее распространены в отличие от первых, которые популярны в наружной и интерьерной рекламе и в декоративном освещении. Блоки питания необходимы, в большинстве случаев, для подключения светодиодных модулей, лент, линеек, для питания другой декоративной светотехники.

Виды блоков питания

В зависимости от количества потребляемой электроэнергии и мощности подключаемых потребителей выбирается мощность блока питания. Тут необходимо учитывать, что при включении и выключении характеристики блока нестабильны, а также то, что в процессе работы в ту или иную сторону могут меняться характеристики входного электричества, поэтому блок подбирается с запасом по мощности, который составляет 1,2 — 1,3 от мощности подключаемых потребителей. Перегрузка блока по мощности может вывести его из строя или приведет к неправильному функционированию.

Другим важным критерием выбора, когда вы собираетесь купить блок питания, является область его использования. Это также актуально для драйверов. Блок может использоваться внутри помещения или на улице. Во втором случае он может быть размещен на стене или на горизонтальной плоскости, в тени или на солнце, может подвергаться, атмосферному воздействию в виде осадков снега и прочего, либо может быть размещен под крышей или козырьком. Все это влияет на то, с какой степенью защиты IP и в каком корпусе выбрать блок питания.

Для внутреннего использования, а также для размещения в закрытых щитках лучшим выбором будут блоки питания с защитой IP20, то есть не влагозащищенные, в защитном кожухе в виде сетки, исключающей прямой контакт с опасными элементами.

При выборе таких блоков питания следует обратить внимание на наличие EMI фильтра — это позволит избежать или свести к минимуму радиочастотные помехи, возникающие при работе блока питания. Иногда производители этим грешат в погоне за конкурентной ценой, поэтому покупая сравнительно недорогой блок питания, стоит уделить внимание этому вопросу.

Интересный материал: Что такое подстроечный резистор: описание устройства и область его применения

Также может быть полезным наличие регулировки выходных параметров тока (в случае с драйверами) или напряжения, то есть наличие подстроечного резистора.

Будет интересно➡ Делаем лабораторный блок питания своими руками

Иногда на выбор влияет размер блока питания. В настоящее время можно встретить блоки питания с одинаковыми характеристиками, но с большой разницей в габаритах. Меньшие по габаритам блоки, как правило, имеют в названии определения компакт (compact), слим (slim), экстра-слим (extra-slim). Меньшие габариты достигаются за счет развития технологий — более плотной компоновки и более совершенной элементной базы.

Часто блоки питания с защитой IP20 имеют активное охлаждение в виде вентилятора, работающего постоянно, либо срабатывающего при превышении определенной температуры. Удобством практически всех блоков в корпусах-сетках является достаточное количество винтовых контактов для подключения потребителей.


IP20

Для наружного использования нужны влагозащищенные блоки питания. Степень их защиты начинается с IP53. Это так называемые блоки rain proof или блоки с защитой от дождя. Представляют собой компромисс между влагозащищенными блоками и “сетками”, поскольку имеют неизолированные контакты, закрытые лишь крышкой, и должны располагаться только на стене в вертикальном положении. В местах, подверженных осадкам, их размещать не стоит.

Следующие по защищенности блоки питания выполнены в пластиковом или алюминиевом корпусе и могут иметь степень защиты IP66-67. Их можно размещать где угодно, но стоит учитывать, что пластик более подвержен деформации, поэтому в местах с прямым попаданием солнечных лучей блоки в алюминиевом корпусе предпочтительнее. Также блоки в пластиковых корпусах имеют ограничения по мощности: как правило, это максимум 150Вт. Как в варианте с пластиком, так и в варианте с алюминием, блок питания заполнен специальным составом, обеспечивающим герметичность и рассеивающим тепло. Открытых контактов у влагозащищенных блоков нет, вместо этого используются выводы в виде кабеля. Их может быть несколько для обеспечения необходимого суммарного сечения и удобства монтажа. Выводы подключены к одной силовой шине. Поэтому, при необходимости, они могут быть объединены.

Блоки питания в алюминиевых корпусах также, как и “сетки” могут быть выполнены в размерах compact, slim или extra-slim. Хотя, в зависимости от производителя, название может быть другим. Смысл в том, что это блок меньшего размера.


Блоки питания в алюминиевых

Покупая блок питания также нужно обращать внимание и на другие особенности. Производители блоков могут предлагать различные варианты защиты, от этого может зависеть цена на блок питания, но тот или иной вариант может быть полезным. У всех современных блоков существует защита от короткого замыкания. Полезной может быть защита от перегрузок, например Mean Well предлагает такую защиту, как Hiccup mode — при возникновении перегрузок блок питания, чтобы избежать перегрева переходит в режим редкой пульсации, пока характеристики перегрузок не придут в норму. В некоторых случаях критичен цвет блока питания — он может быть не обязательно белым или металлическим. Встречаются блоки питания черного цвета — это подойдет для тех мест, где светлый цвет блока бросается в глаза.

Особенностей и характеристик немало, но в них не так сложно разобраться, как кажется на первый взгляд. Зная эти особенности и руководствуясь нужными характеристиками, вы сможете без проблем подобрать и купить блок питания, наилучшим образом подходящий для ваших целей и задач.

Собираем регулируемый блок питания

Те новички, которые только начинают изучение электроники спешат соорудить нечто сверхъестественное, вроде микрожучков для прослушки, лазерный резак из DVD-привода и так далее… и тому подобное… А что насчёт того, чтобы собрать блок питания с регулируемым выходным напряжением? Такой блок питания – это крайне необходимая вещь в мастерской каждого любителя электроники.

С чего же начать сборку блока питания?

Во-первых, необходимо определиться с требуемыми характеристиками, которым будет удовлетворять будущий блок питания. Основные параметры блока питания – это максимальный ток (Imax), который он может отдать нагрузке (питаемому устройству) и выходное напряжение (Uout), которое будет на выходе блока питания. Также стоит определиться с тем, какой блок питания нам нужен: регулируемый или нерегулируемый.

Регулируемый блок питания – это блок питания, выходное напряжение которого можно менять, например, в пределах от 3 до 12 вольт. Если нам надо 5 вольт – повернули ручку регулятора – получили 5 вольт на выходе, надо 3 вольта – опять повернул – получил на выходе 3 вольта.


Регулируемый блок питания

Нерегулируемый блок питания – это блок питания с фиксированным выходным напряжением – его менять нельзя. Так, например, многим известный и широко распространённый блок питания «Электроника» Д2-27 является нерегулируемым и имеет на выходе 12 вольт напряжения. Также нерегулируемыми блоками питания являются всевозможные зарядники для сотовых телефонов, адаптеры модемов и роутеров. Все они, как правило, рассчитаны на какое-то одно выходное напряжение: 5, 9, 10 или 12 вольт.

Понятно, что для начинающего радиолюбителя наибольший интерес представляет именно регулируемый блок питания. Им можно запитать огромное количество как самодельных, так и промышленных устройств, рассчитанных на разное напряжение питания.

Далее нужно определиться со схемой блока питания. Схема должна быть простая, легка для повторения начинающими радиолюбителями. Тут лучше остановиться на схеме с обычным силовым трансформатором. Почему? Потому что найти подходящий трансформатор достаточно легко как на радиорынках, так и в старой бытовой электронике. Делать импульсный блок питания сложнее. Для импульсного блока питания необходимо изготавливать достаточно много моточных деталей, таких как высокочастотный трансформатор, дроссели фильтров и пр. Также импульсные блоки питания содержат больше радиоэлектронных компонентов, чем обычные блоки питания с силовым трансформатором.

Итак, предлагаемая к повторению схема регулируемого блока питания приведена на картинке (нажмите для увеличения).

Параметры блока питания:

  • Выходное напряжение (Uout) – от 3,3…9 В;
  • Максимальный ток нагрузки (Imax) – 0,5 A;
  • Максимальная амплитуда пульсаций выходного напряжения – 30 мВ.;
  • Защита от перегрузки по току;
  • Защита от появления на выходе повышенного напряжения;
  • Высокий КПД.

Возможна доработка блока питания с целью увеличения выходного напряжения.

Принципиальная схема блока питания состоит из трёх частей: трансформатора, выпрямителя и стабилизатора.

Трансформатор. Трансформатор Т1 понижает переменное сетевое напряжение (220-250 вольт), которое поступает на первичную обмотку трансформатора (I), до напряжения 12-20 вольт, которое снимается со вторичной обмотки трансформатора (II). Также, по «совместительству», трансформатор служит гальванической развязкой между электросетью и питаемым устройством. Это очень важная функция. Если вдруг трансформатор выйдет из строя по какой-либо причине (скачок напряжения и пр.), то напряжение сети не сможет попасть на вторичную обмотку и, следовательно, на питаемое устройство. Как известно, первичная и вторичная обмотки трансформатора надёжно изолированы друг от друга. Это обстоятельство снижает риск поражения электрическим током.

Выпрямитель. Со вторичной обмотки силового трансформатора Т1 пониженное переменное напряжение 12-20 вольт поступает на выпрямитель. Это уже классика. Выпрямитель состоит из диодного моста VD1, который выпрямляет переменное напряжение с вторичной обмотки трансформатора (II). Для сглаживания пульсаций напряжения после выпрямительного моста стоит электролитический конденсатор C3 ёмкостью 2200 микрофарад.

Регулируемый импульсный стабилизатор

Схема импульсного стабилизатора собрана на достаточно известной и доступной микросхеме DC/DC преобразователя – MC34063.

Будет интересно➡ Что такое интегральная микросхема

Чтобы было понятно. Микросхема MC34063 является специализированным ШИМ-контроллером, разработанным для импульсных DC/DC преобразователей. Эта микросхема является ядром регулируемого импульсного стабилизатора, который используется в данном блоке питания.

Микросхема MC34063 снабжена узлом защиты от перегрузки и короткого замыкания в цепи нагрузки. Выходной транзистор, встроенный в микросхему, способен отдать в нагрузку до 1,5 ампер тока. На базе специализированной микросхемы MC34063 можно собрать как повышающие (Step-Up), так и понижающие (Step-Down) DC/DC преобразователи. Так же возможно построение регулируемых импульсных стабилизаторов.

Особенности импульсных стабилизаторов

К слову сказать, импульсные стабилизаторы обладают более высоким КПД по сравнению со стабилизаторами на микросхемах серии КР142ЕН (КРЕНки), LM78xx, LM317 и др. И хотя блоки питания на базе этих микросхем очень просты для сборки, но они менее экономичны и требуют установки охлаждающего радиатора.


КПД

Микросхема MC34063 не нуждается в охлаждающем радиаторе. Стоит заметить, что данную микросхему можно довольно часто встретить в устройствах, которые работают автономно или же используют резервное питание. Использование импульсного стабилизатора увеличивает КПД устройства, а, следовательно, уменьшает энергопотребление от аккумулятора или батареи питания. За счёт этого увеличивается автономное время работы устройства от резервного источника питания.

Думаю, теперь понятно, чем хорош импульсный стабилизатор.

Преобразователь ток — напряжение

К выходу стабилизатора подключен преобразователь ток-напряжение, реализованный на двойном операционном усилителе LM358N. Схему данного преобразователя можно найти в документации на эту микросхему, можно почитать о нем «Радио» за 2002г. №9 стр.23. И Нечаев, или у меня на сайте в статье «Микросхемы для измерения тока». Эта схема хороша тем, что избавляет от необходимости подгонять сопротивление датчика тока, т.е. шунта. Преобразователь тока собран на одном из ОУ микросхемы DA2 LM358N, R7 – датчик тока, С7 сглаживает форму измеряемого тока при больших пульсациях. Номиналы резисторов выбраны таким образом, что при протекании через шунт тока величиной 1 А, на резисторе R6 упадет напряжение 1 вольт. Величину этого напряжения, т.е. коэффициент преобразования, регулирую резистором R5. С этого резистора R6 можно снимать и оцифровывать сигнал для амперметра. Конденсатор С5 также служит конденсатором фильтра, иначе возможны ложные срабатывания схемы защиты. В случае применения цифрового амперметра, информацию на индикаторе будет трудно проанализировать. На второй половине микросхемы DA2 собран компаратор схемы защиты стабилизатора.

Детали и электронные компоненты

Теперь немного о деталях, которые потребуются для сборки блока питания.

Трансформатор. В качестве трансформатора подойдёт любой сетевой понижающий трансформатор мощностью 8-10 ватт. Его первичная обмотка (I) должна быть рассчитана на переменное напряжение 220-250 вольт, а вторичная (II) на 12-20 вольт.

Где найти такой трансформатор?

Найти подходящий трансформатор можно в старой, неисправной и морально устаревшей аппаратуре: кассетных магнитофонах, стационарных CD-проигрывателях, игровых приставках и пр. Например, подойдут трансформаторы от старых лампово-полупроводниковых телевизоров советского производства ТВК-110ЛМ, ТВК-110Л2 и ТВК-70. Можно приобрести трансформатор серии ТП114, например ТП114-163М. При подборе силового трансформатора не лишним будет иметь представление о том, как узнать мощность трансформатора.

Также подойдёт трансформатор ТС-10-3М1 с выходным напряжением около 15 вольт. В магазинах радиодеталей и на радиорынках можно найти подходящий трансформатор, главное, чтобы он соответствовал указанным параметрам.

Микросхема MC34063. Микросхема MC34063 выпускается в корпусах DIP-8 (PDIP-8) для обычного монтажа в отверстия и в корпусе SO-8 (SOIC-8) для поверхностного монтажа. Естественно, в корпусе SOIC-8 микросхема обладает меньшими размерами, а расстояние между выводами составляет около 1,27 мм. Поэтому изготовить печатную плату для микросхемы в корпусе SOIC-8 сложнее, особенно тем, кто только недавно начал осваивать технологию изготовления печатных плат. Следовательно, лучше взять микросхему MC34063 в DIP-корпусе, которая больше по размерам, а расстояние между выводами у такого корпуса – 2,5 мм. Сделать печатную плату под корпус DIP-8 будет легче.

Диодный мост. Диодный мост для блока питания можно изготовить из 4 отдельных диодов 1N4001-1N4007. Также вместо диодов 1N4001-1N4007 можно применить диоды 1N5819. При этом экономичность блока питания повыситься, поскольку диоды серии 1N58xx – это диоды Шоттки и у них меньшее падение напряжения на p-n переходе, чем у обычных диодов серии 1N400x.

Также в блок питания можно установить диодную сборку выпрямительного моста. Сборка занимает на печатной плате меньше места. Для установки в схему подойдут сборки на ток 1 ампер и выше. Для надёжности можно воткнуть в плату сборку и на 2 ампера – хуже не будет.

Где найти сборку диодного моста? В бэушных платах от любой электроники, которая питается от сети 220 вольт. Даже в компактных люминесцентных лампах – КЛЛ – есть диодный мост. Можно выковырять оттуда. Правда что попадётся, 4 отдельных диода или сборка диодного моста можно только гадать – тут как повезёт.

Если быть более конкретным, то подойдут диодные мосты (сборки): DB101-107, RB151-157, D3SBA10, 2W10M, DB207, RS207 и другие аналогичные и более мощные. Можно с лёгкостью применить диодный мост из неисправного компьютерного блока питания. Они мощные и здоровые, рассчитаны на довольно большой ток – хватить за глаза. Не забудьте проверить его на исправность!

Конденсаторы C1, C2, C4, C5 служат для подавления импульсных помех, которые поступают из электросети. Кроме этого они блокируют импульсные помехи, которые могут поступить в электросеть от самого импульсного стабилизатора.

Элементы защиты. В схеме применено два предохранителя. Предохранитель FU2 представляет собой обычный плавкий предохранитель на ток срабатывания 0,16 А (160 мА). Он включен последовательно с первичной обмоткой (I) трансформатора T1. FU1 – самовосстанавливающийся предохранитель. Когда ток через него становиться больше 0,5 ампер, то его сопротивление резко увеличивается, а ток в цепи выпрямителя и стабилизатора резко падает.

Так реализована защита в случае неисправности преобразователя. Стабилитрон VD3 также служит защитным и работает в паре с самовосстанавливающимся предохранителем FU1. Основная его цель – защитить нагрузку (питаемое устройство) от повреждения высоким напряжением. Напряжение стабилизации стабилитрона составляет 11 вольт. В случае неисправности преобразователя и появления на выходе напряжения более 11 вольт, ток через стабилитрон резко возрастает. Возросший ток в цепи приводит к срабатыванию предохранителя FU1, который ограничивает ток. Поэтому защитный стабилитрон VD3 необходимо установить в схему обязательно. В случае если не удастся найти подходящий самовосстанавливающийся предохранитель, то его можно заменить обычным плавким на ток срабатывания 0,5 ампер.

Список деталей, которые потребуются для сборки блока питания.

НазваниеОбозначениеНоминал/ПараметрыМарка или тип элемента
МикросхемаDA1MC34063
Диодный мостVDS1 (VD1-VD4)1-2 ампер, 600 вольтD3SBA10, RS207, DB107 и аналоги
Электролитические конденсаторыC8, C9, C12330 мкФ * 16 вольтК50-35 или аналоги
C32200 мкФ * 35 вольт
КонденсаторыC1, C2, C4, C5, C10, C11, C130,22 мкФКМ-5, К10-17 и аналогичные
C60,1 мкФ
C7470 пФ
РезисторыR10,2 Ом (1 Вт)МЛТ, МОН, С1-4, С2-23, С1-14 и аналогичные
R3560 Ом (0,125 Вт)
R43,6 кОм (0,125 Вт)
R58,2 кОм (0,125 Вт)
Резистор переменныйR21,5 кОмСП3-9, СП4-1, ППБ-1А и аналогичные
Диод ШотткиVD21N5819
СтабилитронVD311 вольт1N5348
ДроссельL1, L2300 мкГн
ДроссельL3самодельный
Предохранитель плавкийFU20,16 ампер
Самовосстанавливающийся предохранительFU10,5 ампер (на напряжение >30-40 вольт)MF-R050; LP60-050; FRX050-60F; FRX050-90F
Светодиод индикаторныйHL1любой 3 вольтовый

Дроссели. Дроссели L1 и L2 можно изготовить самостоятельно. Для этого потребуется два кольцевых магнитопровода из феррита 2000HM типоразмера К17,5 х 8,2 х 5 мм. Типоразмер расшифровывается так: 17,5 мм. – внешний диаметр кольца; 8,2 мм. – внутренний диаметр; а 5 мм. – высота кольцевого магнитопровода. Для намотки дросселя понадобиться провод ПЭВ-2 сечением 0,56 мм. На каждое кольцо необходимо намотать 40 витков такого провода. Витки провода следует распределять по ферритовому кольцу равномерно.


Дроссели L1 и L2

Перед намоткой, ферритовые кольца нужно обмотать лакотканью. Если лакоткани нет под рукой, то обмотать кольцо можно скотчем в три слоя. Стоит помнить, что ферритовые кольца могут быть уже покрашены – покрыты слоем краски. В таком случае обматывать кольца лакотканью не надо.

Будет интересно➡ Что такое элементная база и где она применяется

Кроме самодельных дросселей можно применить и готовые. В этом случае процесс сборки блока питания ускориться. Например, в качестве дросселей L1, L2 можно применить вот такие индуктивности для поверхностного монтажа (SMD – дроссель).

Как видим, на верхней части их корпуса указано значение индуктивности – 331, что расшифровывается как 330 микрогенри (330 мкГн). Также в качестве L1, L2 подойдут готовые дроссели с радиальными выводами для обычного монтажа в отверстия. Выглядят они вот так.

Величина индуктивности на них маркируется либо цветовым кодом, либо числовым. Для блока питания подойдут индуктивности с маркировкой 331 (т.е. 330 мкГн). С учётом допуска ±20%, который разрешён для элементов бытовой электроаппаратуры, также подойдут дроссели с индуктивностью 264 – 396 мкГн. Любой дроссель или катушка индуктивности рассчитана на определённый постоянный ток. Как правило, его максимальное значение (IDC max) указывается в даташите на сам дроссель. Но на самом корпусе это значение не указывается. В таком случае можно ориентировочно определить значение максимально допустимого тока через дроссель по сечению провода, которым он намотан. Как уже говорилось, для самостоятельного изготовления дросселей L1, L2 необходим провод сечением 0,56 мм.

Дроссель L3 самодельный. Для его изготовления необходим магнитопровод из феррита 400HH или 600HH диаметром 10 мм. Найти такой можно в старинных радиоприёмниках. Там он используется в качестве магнитной антенны. От магнитопровода нужно отломать кусок длиной 11 мм. Сделать это достаточно легко, феррит легко ломается. Можно просто плотно зажать необходимый отрезок пассатижами и отломить излишки магнитопровода. Также можно зажать магнитопровод в тисках, а потом резко ударить по магнитопроводу. Если с первого раза аккуратно разломить магнитопровод не получиться, то можно повторить операцию.

Затем получившийся кусок магнитопровода нужно обмотать слоем бумажного скотча или лакоткани. Далее наматываем на магнитопровод 6 витков сложенного вдвое провода ПЭВ-2 сечением 0,56 мм. Для того чтобы провод не размотался, обматываем его сверху скотчем. Те выводы проводов, с которых начиналась намотка дросселя, в последующем впаиваем в схему в том месте, где показаны точки на изображении L3. Эти точки указывают на начало намотки катушек проводом.

Дополнения

В зависимости от нужд можно внести в конструкцию те или иные изменения.

Например, вместо стабилитрона VD3 типа 1N5348 (напряжение стабилизации – 11 вольт) в схему можно установить защитный диод – супрессор 1,5KE10CA.

Супрессор – это мощный защитный диод, по своим функциям схож со стабилитроном, однако, основная его роль в электронных схемах – защитная. Назначение супрессора – это подавление высоковольтных импульсных помех. Супрессор обладает высоким быстродействием и способен гасить мощные импульсы.

В отличие от стабилитрона 1N5348, супрессор 1.5KE10CA обладает высокой скоростью срабатывания, что, несомненно, скажется на быстродействии защиты.

В технической литературе и в среде общения радиолюбителей супрессор могут называть по-разному: защитный диод, ограничительный стабилитрон, TVS-диод, ограничитель напряжения, ограничительный диод. Супрессоры можно частенько встретить в импульсных блоках питания – там они служат защитой от перенапряжения питаемой схемы при неисправностях импульсного блока питания.

О назначении и параметрах защитных диодов можно узнать из статьи про супрессор.

Супрессор 1,5KE10CA имеет букву С в названии и является двунаправленным – полярность установки его в схему не имеет значения.

Если есть необходимость в блоке питания с фиксированным выходным напряжением, то переменный резистор R2 не устанавливают, а заменяют его проволочной перемычкой. Нужное выходное напряжение подбирают с помощью постоянного резистора R3. Его сопротивление рассчитывают по формуле:

Uвых = 1,25 * (1+R4/R3)

После преобразований получается формула, более удобная для расчётов:

R3 = (1,25 * R4)/(Uвых – 1,25)

Если использовать данную формулу, то для Uвых = 12 вольт потребуется резистор R3 с сопротивлением около 0,42 кОм (420 Ом). При расчётах, значение R4 берётся в килоомах (3,6 кОм). Результат для резистора R3 также получаем в килоомах.

Для более точной установки выходного напряжения Uвых вместо R2 можно установить подстроечный резистор и выставить по вольтметру требуемое напряжение более точно.

При этом следует учесть, что стабилитрон или супрессор стоит устанавливать с напряжением стабилизации на 1…2 вольта больше, чем расчётное напряжение на выходе (Uвых) блока питания. Так, для блока питания с максимальным выходным напряжением равным, например, 5 вольт следует установить супрессор 1,5KE6V8CA или аналогичный ему.

Изготовление печатной платы

Печатную плату для блока питания можно сделать разными способами. О двух методах изготовления печатных плат в домашних условиях уже рассказывалось на страницах сайта.

  • Наиболее быстрый и комфортный способ – это изготовление печатной платы с помощью маркера для печатных плат. Применялся маркер Edding 792. Показал он себя с лучшей стороны. Кстати, печатка для данного блока питания сделана как раз этим маркером.
  • Второй метод подходит для тех, у кого в запасе есть много терпения и твёрдая рука. Это технология изготовления печатной платы корректирующим карандашом. Это, довольно простая и доступная технология пригодиться тем, кто не смог найти маркер для печатных плат, а делать платы ЛУТом не умеет или не имеет подходящего принтера.
  • Третий метод похож на второй, только в нём используется цапонлак – Как сделать печатную плату с помощью цапонлака?

В общем, выбрать есть из чего.

Работа схемы стабилизатора

Микросхема DA1 имеет в своем составе стабилизатор напряжения, источник опорного напряжения (вывод 8), усилитель рассогласования (вход вывод 6)и вывод включения – выключения стабилизатор, вывод 9 микросхемы DA1. Причем в выключенном состоянии напряжение выхода стабилизатора, по крайней мере, у меня, всего 4 мВ. Включение стабилизатора в данной схеме обеспечивает RC цепочка R2 ,C2. При появлении напряжения на входе стабилизатора, начинает заряжаться конденсатор С2, ток заряда создает падение напряжения между выводами 9 и 7 микросхемы DA1, этого напряжения достаточно для включения стабилизатора. Вообще оно должно быть не менее двух вольт. Выходное напряжение устанавливается с помощью подстроечного резистора R4.

Рейтинг
( 2 оценки, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями: